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We propose a quantum diffraction imaging technique whereby
one photon of an entangled pair is diffracted off a sample and
detected in coincidence with its twin. The image is obtained by
scanning the photon that did not interact with matter. We show
that when a dynamical quantum system interacts with an external
field, the phase information is imprinted in the state of the field
in a detectable way. The contribution to the signal from photons
that interact with the sample scales as∝ I1/2

p , where Ip is the source
intensity, compared with ∝ Ip of classical diffraction. This makes
imaging with weak fields possible, providing high signal-to-noise
ratio, avoiding damage to delicate samples. A Schmidt decomposi-
tion of the state of the field can be used for image enhancement by
reweighting the Schmidt modes contributions.

quantum imaging | entangled photons | quantum diffraction |
phase-sensitive imaging

Rapid advances in short-wavelength ultrafast light sources
have revolutionized our ability to observe the microscopic

world. With bright free-electron lasers and high-harmonics table-
top sources, short time (femtosecond) and length (subnanome-
ter) scales become accessible experimentally. These offer new
exciting possibilities to study spatio-spectral properties of quan-
tum systems driven out of equilibrium and monitor dynamical
relaxation processes and chemical reactions. The spatial fea-
tures of small-scale charge distributions can be recorded in time.
Far-field off-resonant X-ray diffraction measurements provide
useful information on the charge density σ (Q), where Q is the
diffraction wavevector. The observed diffraction pattern S (Q)

is given by the modulus square S (Q)∝ |σ (Q)|2. Inverting these
signals to real-space σ (r) requires a Fourier transform. Since
the phase of σ (Q) is not available, the inversion requires phase
retrieval which can be done using either algorithmic solutions
(1, 2) or more sophisticated and costly experimental setups such
as heterodyne measurements (3). Correlated beam techniques
(4–10) in the visible regime have been shown to circumvent
this problem by producing the real-space image of mesoscopic
objects. Such techniques have classical analogs using correlated
light. They reveal the modulus square of the studied object
|σ (r)|2 (11, 12).

In this paper we consider the setup shown in Fig. 1. We focus
on off-resonant scattering of entangled photons in which only
one photon, denoted as the “signal,” interacts with a sample.
Its entangled counterpart, the “idler,” is spatially scanned and
measured in coincidence with the arrival of the signal photon.
The idler reveals the image and also uncovers phase informa-
tion, as was recently shown in ref. 13 for linear diffraction where
heterodyne-like detection has been achieved due to vacuum
fluctuation of the detector.

Our first main result is that for small diffraction angles,
using Schmidt decomposition of the two-photon amplitude
Φ (qs , qi) =

∑∞
n

√
λnun (qs)vn (qi), where λn is the respective

mode weight, reads

S(p)[ρ̄i ]∝Re
∑
nm

√
λnλmβ

(p)
nmv∗n (ρ̄i)vm (ρ̄i). [1]

Here β
(1)
nm =

∫
dr un(r)σ(r)u∗m(r), β

(2)
nm =

∫
dr un(r) |σ(r)|2

u∗m (r), and ρ̄i is a two-dimensional vector in the transverse
detection plane. σ (r) is the charge density of the target object
prepared by an actinic pulse and p = (1, 2) represents the
order in σ (r). For large diffraction angles and frequency-
resolved signal, the phase-dependent image is modified to
S [ρ̄i ]∝Re

∑∞
nm γnm

√
λnλmv∗n (ρ̄i)vm (ρ̄i), where γnm has a

similar structure to β
(1)
nm modulated by the Fourier decomposi-

tion of the Schmidt basis. γnm is phase dependent, contrast to
diffraction with classical sources.

Our second main result tackles the spatial resolution enhance-
ment. In entanglement-based imaging, the resolution is lim-
ited by the degree of correlation of the two beams. Schmidt
decomposition of the image allows us to enhance desired spa-
tial features of the charge density. High-order Schmidt modes
(which correspond to angular momentum transverse modes with
high topological charge) offer more detailed matter information.
Reweighting of Schmidt modes maximizes modal entropy which
yields matter information gain and reveals fine details of the
charge density. Moreover, S(1) in Eq. 1 has no classical analog;
the contribution to the overall image from the signal photons
scales as I

1/2
p , where Ip is the intensity of the source. This is

a unique signature of the linear quantum diffraction (13). The
overall detected signal is obtained in coincidence and scales as
∝ I

3/2
p . Classical diffraction in contrast requires two interactions

with the incoming field and therefore scales as Ip , and the corre-
sponding coincidence scales as ∝ I 2

p , which also applies for S(2).

Significance

A quantum diffraction imaging technique is proposed,
whereby one photon of an entangled pair is diffracted off
a sample and detected in coincidence with its twin. Scan-
ning the photon that did not interact with matter, we show
that the phase information imprinted in the state of the
field is detectable. We discuss several experimental applica-
tions: (i) Obtaining real-space images in diffraction imaging
avoids the “phase problem.” (ii) The image scales as ∝ I1/2

p
with the interacting photons, where Ip is the source inten-
sity, compared with ∝ Ip of classical diffraction. This makes
weak-field imaging possible, avoiding damage to delicate
samples. (iii) A Schmidt decomposition of the field can be used
for image enhancement by reweighting the Schmidt modes
contributions.
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Fig. 1. Sketch of the proposed quantum imaging setup. A broadband
pump pulse with the wavevector kp propagates through a χ(2) crystal, gen-
erating an entangled photon pair denoted as signal and idler. The photons
are distinguished either by polarization (type II) or by frequency (type I) and
are separated by a beam splitter (BS). The signal photon interacts with the
sample and can be further frequency dispersed and collected by a “bucket”
detector Ds with no spatial resolution. The idler is spatially resolved in
the transverse plane by the detector Di . The two photons are detected in
coincidence (Eq. 12).

Thanks to favorable scaling, weak fields can be used to study
fragile samples to avoid damage.

Spatial Entanglement
Various sources of entangled photons are available, from quan-
tum dots (14) to cold atomic gases (15) and nonlinear crystals,
and are reviewed in ref. 4. A general two-photon state can be
written in the form

|ψ〉=
∑
ks ,ki

Φ (ks , ki)ε
(µs )
ks

ε
(µi )
ki

a†ks ,µs
a†ki ,µi

|0s , 0i〉 , [2]

where ε(ν)
k is polarization, ak,ν

(
a†k,ν

)
are field annihilation (cre-

ation) operators, and Φ (ks , ki) is two-photon amplitude. In the
paraxial approximation the transverse momentum {qs , qi} and
the longitudinal degrees of freedom are factorized. The trans-
verse amplitude of the photon pair generated using a parametric
down converter takes then the form (4, 16–18)

Φ (qs , qi) = Γ (qs + qi)sinc
(
L2 (qs − qi)

2), [3]

and here Γ (q) is the pump envelope of the transverse compo-
nents, L2 =

lzλp

4π
, where λp is the central wavelength and lz is the

length of the nonlinear crystal along the longitudinal direction.
The state of field is then given by

|ψ〉= |vac〉+C
∑

qs , qi
ωs ,ωi

Ap (ωs +ωi) Φ (qs , qi)

× |qs ,ωs ; qi ,ωi〉, [4]

where C is a normalization prefactor and Ap is the pump
envelope.

Schmidt Decomposition of Entangled Two-Photon States. The hall-
mark of entangled photon pairs is that they cannot be considered
as two separate entities. This is expressed by the inseparability of

the field amplitude Φ into a product of single-photon amplitude;
all of the interesting quantum optical effects discussed below
are derivatives of this feature. Φ can be represented as a super-
position of separable states using the Schmidt decomposition
(19–21)

Φ (qs , qi) =

∞∑
n

√
λnun (qs)vn (qi), [5]

where the Schmidt modes un (qs) and vn (qi) are the eigenvec-
tors of the signal and the idler reduced density matrices, and
the eigenvalues λn satisfy the normalization

∑
n λn = 1 (20).

The number of relevant modes serves as an indicator for the
degree of inseparability of the amplitude, i.e., photon entangle-
ment. Common measures for entanglement include the entropy
Sent =−

∑
n λn log2 λn or the Schmidt number κ−1≡

∑
n λ

2
n .

The latter is also known as the inverse participation ratio as it
quantifies the number of important Schmidt modes or the effec-
tive joint Hilbert space size of the two photons. In a maximally
entangled wavefunction, all modes contribute equally.

The spatial profile of the photons in the transverse plane
(perpendicular to the propagation direction) can be expanded
and measured using a variety of basis functions; e.g., Laguerre–
Gauss (LG) or Hermite–Gauss (HG) has been demonstrated
experimentally (22, 23). These sets satisfy orthonormality∫
d2q un (q)vk (q)= δnk and closure relations

∑
n un (q)vn (q′)=

δ(2)(q− q′). The deviation of λn from a uniform (flat) dis-
tribution reflects the degree of entanglement. Perfect quan-
tum correlations correspond to maximal entanglement entropy
and thus a flat distribution of modes. This is further clarified
by the closure relations, which demonstrate the convergence
into a point-to-point mapping in the limit of perfect trans-
verse entanglement. The biphoton amplitude exhibits two lim-
iting cases for the infinite inverse participation ratio which are
demonstrated in Fig. 2. When the sinc function in Eq. 3 is

Fig. 2. Transverse beam amplitude profile for different Schmidt num-
bers. For κ3 = 1 the amplitude in Eq. 5 is separable and the photons are
not entangled. As κ is increased the amplitude approaches a narrow dis-
tribution. κ1 = 2,500 and κ2 = 25.5 are obtained in the σpL> 1 regime,

and the amplitude approaches Φ
(∞)
� ∝ δ (qs + qi). κ4 = 25.5 and κ5 = 2,500

are taken in the σpL< 1 regime, with the asymptotic amplitude Φ
(∞)
� ∝

δ (qs− qi).
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approximated by a Gaussian, the Schmidt number is given in a
closed form (24),

κ=
1

4

(
σpL+

1

σpL

)2

, [6]

where σ2
p is the variance of the transverse momentum of the

pump. For σp = l = 1, we get κ= 1 and the two-photon wave-
function is separable, Φ(κ=1)≡Φ(1)(qs , qi) = Φ (qs) Φ (qi) (no
entanglement). A high number of relevant Schmidt modes indi-
cates stronger quantum correlations between the two photons as
shown in Fig. 2. In the extreme cases of either vanishing or infi-
nite product σp l the photons are maximally entangled κ→∞,
and the corresponding amplitude is Φ(∞)(qs , qi)∝ δ (qs ± qi)
as depicted in Fig. 2. We denote by ρs/i as the real-space
transverse plane coordinate, conjugate to qs/i . The real-space
amplitude has two limiting cases, when σp l→ 0 Φ (ρs ,ρi) =

Φ
(∞)
� (ρs ,ρi) = Φ0δ (ρs −ρi). This amplitude maps the image

plane explored by the signal photon directly into the idler’s detec-
tor. The opposite limiting case σpL→∞ is given by the ampli-
tude Φ (ρs ,ρi) = Φ

(∞)
� (ρs ,ρi) = Φ0δ (ρs +ρi). This amplitude

maps the sample plane monitored by the signal photon ρs→−ρi

which results in the mirror image. We use the abbreviated nota-
tion whereby ρ̄i denotes the mapping from the sample to the
detector plane with the corresponding sign.

The Reduced Idler Density Matrix in the Schmidt Basis
The reduced density matrix of the idler reveals the role of quan-
tum correlations in the proposed detection measurement scheme
(Fig. 1). The joint light–matter density matrix in the interaction
picture is given by

ρint
µφ (t) = T e−i

∫
dτHI ,−(τ)ρµ⊗ ρφ, [7]

where T represents superoperator time ordering and the off-
resonance radiation/matter coupling is HI =

∫
drσ (r, t)A2 (r, t)

with the vector field A (r, t) = − Ė(r,t)
c

. The subscript (−) on the
Hilbert space operator represents the commutator O−≡ [O, ·].
The electric field is given by E (r, t)=

∑
k E(+)

k (r, t)+ E(−)
k (r, t)

such that

E(+)
k (r, t) =

(
E(−)
k (r, t)

)
†=

√
2π~ωk

Vk

∑
ν

ε
(ν)
k ak,νe

ik·r−iωkt ,

[8]

where µ stands for the matter’s degrees of freedom while φ rep-
resents the field’s degrees of freedom. For a weak field, one can
expand the evolution of the density matrix in powers of the field
which correspond to number of light–matter interactions. To first
nontrivial order, a single interaction from the left or the right
of the joint space density matrix corresponds to a change in the
coherence in the field subspace ρφ = trµρµφ. The radiation field
records no photon exchange due to a single interaction with the
matter, merely a change in its phase. When the initial state of
the field contains a nontrivial internal structure such as quantum
correlations arising from entanglement, the initial reduced den-
sity matrix ρφi = trµφsρµ,φsi obtained by tracing over the signal
beam is given by

ρφi (0) =
∑
n,i,i′

λnv
∗
n (ki)vn

(
k′i
)
|1i〉〈1i′ |, [9]

which is diagonal in the idler subspace in the Schmidt basis.
When the signal interacts with an external matter degree of free-
dom, the idler reduced density matrix is no longer diagonal.

Explicitly, in the limit of diffraction to small angles the idler’s
reduced density matrix is given by (SI Appendix, section 1)

ρ
(1)
φi

=
∑

n,m,i,i′

Pnmv∗n (ki)vm
(
k′i
)
|1i〉〈1i′ |+ h.c, [10]

where Pnm = iβ
(1)
nm

√
λnλm , and

β(1)
nm =

∫
dr un (r)σ (r)u∗m (r) [11]

are the projections of matter quantities on the chosen Schmidt
basis. Our setup allows one to probe the induced coherence of
the field due to its interaction with matter.

Fig. 3 displays the induced Schmidt-space coherence of the
reduced density matrix of idler (the noninteracting photon) due
to the interaction of its twin (signal) with an object. We have
chosen the Hermite–Gauss basis, depicted in Fig. 4 for this visu-
alization. Each mode is labeled by two indexes, one for each
spatial dimension of the image. In Fig. 3 C and D, we have traced
over the corresponding index, resulting in a 1D dataset. Each
coherence corresponds to a projection of the object between
two modes. Eq. 1 can be derived as the intensity expecta-
tion value calculated from the idler’s reduced density matrix
given in Eq. 10.

Far-Field Diffraction
We next turn to far-field diffraction with arbitrary scattering
directions. While the incoming field is understood to be parax-
ial, the scattered field is not. The coincidence image in the
far field yields a similar expression to the one calculated from
the reduced density matrix in Eq. 10 with an additional spa-
tial phase factor characteristic to far-field diffraction. Using
Eq. 4 for the setup described in Fig. 1, the coincidence image

m

0

0.05

n

0.1

m

0

0.005

n

0.01

A

C

B

D

Fig. 3. The reduced idler density matrix in the Schmidt basis. (A) The pro-
jected object. (B) The “spot size” corresponding to the HG00 mode. (C) The
idler’s reduced density matrix before the interaction with the object pre-
sented in Hermite–Gauss basis modes, given by Eq. 9. (D) The change in the
reduced density matrix of the idler due to the interaction with the object
given by Eq. 10.
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Fig. 4. Hermite–Gaussian modes. Modes are labeled by two indexes, each
representing one dimension in the transverse plane.

is given by the intensity–intensity correlation function (SI
Appendix),

S [ρ̄i ] =

∫
dXsdX iGs

(
Xs , X̄s

)
Gi

(
X i , X̄ i

)
×
〈
T Îs (rs , ts)Îi (ri , ti)UI (t)

〉
, [12]

where Îm (rm , tm)≡ Ê
(−)

m,R (rm , tm)· Ê(+)

m,L (rm , tm)are field inten-
sity operators and m = (s, i). The gating functions Gm represent
the details of the measurement process (25, 26). Eq. 12 can be
calculated straight from the reduced density matrix of the idler,
despite the fact that it includes the signal’s intensity operator.
The reason stems from the fact that the intensity operator expec-
tation value monitors the single-photon space. The partial trace
over a singly occupied signal state results in the same conclusion.
Estimating this expression includes a 10-field operators correla-
tion function which is shown explicitly in SI Appendix, section 2,
Eq. S4. In the far field, after rotational averaging we obtain (SI
Appendix, section 2)

S [ρ̄i ]∝Re

∫
dωsE [ωs ]

∫
dρsΦ (ρs , ρ̄i)×∫

dρ′Φ
(
ρ′, ρ̄i

)
σ
(
ρ′
)
e−iQs·ρ

′
. [13]

Here Qs = ωs
c
ρ̂s is the diffraction wavevector, E [ωs ]=∫

dωiG (ωs)G (ωi)|A (ωs +ωi)|2 is a functional of the
frequency, S =− (S −S0) is the image with the noninteracting-
uniform background (S0) subtracted, and ρ̄i is the mapping
coordinate onto the detector plane with the corresponding sign.
σ (ρ)≡

∑
α;a,b 〈a|σ̂ (ρ−ρα)|b〉 denotes a matrix element of

the charge-density operator, traced over the longitudinal axis,
with respect to the eigenstates {a, b}, and ρα are positions of
particles in the sample. The matter can be prepared initially in
a superposition state. Substituting the Schmidt decomposition
(Eq. 5) into Eq. 13 gives

S [ρ̄i ]∝Re

∫
dωsE [ωs ]dρs

∞∑
nm

√
λnλmun (ρs)v

∗
n (ρ̄i)

× vm (ρ̄i)

∫
dρ′u∗m

(
ρ′
)
σ
(
ρ′
)
e−iQs ·ρ

′
. [14]

This shows a smooth transition from momentum to real-space
imaging. For low Schmidt modes that do not vary appreciably
across the charge density scale, the last term yields σ (Qs)≈∫
dρ′u∗m (ρ′)σ (ρ′)e−iQs ·ρ

′
. Consequently, when the Schmidt

modes do not vary on the length scale of the charge density up
to high order, the Fourier decomposition of the charge density
is projected on un and reweights the corresponding idler modes.
The resulting image given by spatial scanning of the idler is the
Fourier transform of the charge density projected on the relevant
idler mode. Alternately, when the Schmidt modes vary along the
charge density, the exact expression for the far-field diffraction
image is given by

S [ρ̄i ]∝Re

∞∑
nm

γnm
√
λnλmv∗n (ρ̄i)vm (ρ̄i) [15]

γnm =
∑
k

β
(1)
km

∫
dρsdωsE [ωs ]un (ρs)u

∗
k (Qs), [16]

where β
(1)
nm is defined in Eq. 11. From the definition of Qs it

is evident that its angular component of uk is identical to the
corresponding one in un and therefore γnm is composed of sum-
mation over modes with the same angular momentum in the LG
basis set.

It is also possible to obtain the real-space image of the charge
density when the signal is frequency dispersed. Assuming for sim-
plicity perfect quantum correlations between the signal and idler,
we obtain

S [ρ̄i , ω̄s ]∝Reσ (ρ̄i)e
−i ω̄s

c
ρ̄i . [17]

This image is phase dependent and therefore allows us to trans-
form freely between momentum and real space which is not
possible in ordinary diffraction of classical light. The phase-
dependent Fourier image in this limit is also given by resolving
the signal photon with respect to the frequency ω̄s as well (SI
Appendix).

Reweighted Modal Contributions
The apparent classical-like form of the coherent superposition
in the Schmidt representation, where each mode carries dis-
tinct spatial matter information, suggests experiments in which
a single Schmidt mode is measured at a time (23). This bears
some resemblence to the coherent mode representation of par-
tially coherent sources studied in refs. 27 and 28. Moreover, it
allows the reweighting of high angular momentum modes avail-
able experimentally (29) and known to have a decreasing effect
on the image upon naive summation. Reweighting of truncated
sums is extensively used as a sharpening tool in digital sig-
nal processing, especially in medical image enhancement (30).
This approach raises questions regarding the analysis of optimal
Schmidt weights, error minimization, and engineered functional
decrease of weights as done in theory for sampled signals. The
structure of the spatial information mapping from the signal to
the idler takes a simpler form for small scattering angles. When
we examine the first- and second-order contributions due to a
single charge distribution, the resulting image of a truncated sum
composed of the first N modes is given by

S(p)
N [ρ̄i ]∝Re

N∑
n,m=0

√
λnλmβ

(p)
nmv∗n (ρ̄i)vm (ρ̄i), [18]
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Fig. 5. Weighted recombination of the truncated sum in Eq. 18, using
HG basis with σpl = 0.07, corresponding to κ≈ 14. (A) Schmidt weights
of the entangled light source. (B) First-order image. Shown is recom-
bination using the original weight of each mode (Upper row), with
respect to the N first modes. This corresponds to straightforward imag-
ing with the given parameters. Lower row shows the reweighted-flattened
Schmidt spectrum recombination that corresponds to the N first modes,
marked with (R). (C) The real part of the image I (r,φ) with added spa-

tial phase |I (ρ,φ)| exp
[
−i 2π

L/3ρ
]
. (D) Reweighted truncated sum diffrac-

tion image given by Eq. 18 for n = 20. Recovering the spatial phase
is shown.

where β
(2)
nm =

∫
dr un (r)|σ (r)|2 u∗m (r) is a scattering coefficient

between Schmidt modes which resembles the expressions used in
previous two-photon imaging techniques (4, 11, 12). β(1)

nm , defined
in Eq. 11, holds phase information of the studied object and
has no classical counterpart. Its momentum space representation
reads,

β(1)
nm =

∑
ks ,kd

un (ks)σ (ks − kd)u∗m (kd), [19]

where d stands for a detected mode initially in a vacuum state.
This shows more clearly the physical role played by the charge
density in the coupling of different Schmidt modes.

Fig. 5A presents the Schmidt spectrum for a beam charac-
terized by σp l = 0.07 which yields κ≈ 14. Fig. 5B illustrates the
improvement of the acquired image due to resummation of the
Hermite–Gauss modes of the object decomposed in Fig. 3. By
using Eq. 18 with a flattened Schmidt spectrum we demonstrate

the enhancement of fine features of the diffracted image. Phase
measurement is demonstrated in Fig. 5 C and D.

Discussion
The scattered quantum light from matter carries phase informa-
tion at odd orders in the charge distribution σ (q), the light–
matter interaction. To first order, the change in the quantum
state of the field due to a single interaction is imprinted in
the phase of the photons, which is detectable. However, no
photon is generated in this order. Homodyne diffraction of
classical sources results in even correlation functions of the
charge density. We have provided a complete description of the
charge distribution resulting from nonvanishing odd orders of
the radiation–matter interaction. The detected image is sensitive
to the degree of entanglement. High resolution is achieved in
the limits of infinite or vanishing σp l , which are hard to realize.
For a long nonlinear crystal, the phase matching factor is more
dominant and strong beam divergence is required to generate
strong quantum correlations. This limit is not compatible with
the paraxial approximation for the amplitude and requires fur-
ther study. In the short crystal limit the amplitude acquires the
angular spectrum of the pump and the resolution is limited by
the crystal length and low beam divergence.

We have demonstrated that coincidence diffraction measure-
ments of entangled photons with quantum detection can also
achieve enhanced imaging resolution. Eq. 18 provides an intu-
itive picture for the information transfer from the signal to the
idler beams. By reweighting the spatial modes that span the
measured image, one can refine the matter information. High
angular momentum states of light have been recently demon-
strated experimentally with quantum numbers above ∼104 (29).
It is of cardinal practical importance to quantify the natural cut-
off of high topologically charged modes to discuss subwavelength
resolution. Reweighting the Schmidt modes distribution is moti-
vated by the closure relations

∑
n un (q)vn (q′) = δ(2)(q− q′).

This suggests that equal contribution of modes converges into
a delta distribution of the two-photon amplitude, perfectly
transferring the spatial information between the photons. Find-
ing optimal weights is a challenge for future studies. Signal
acquisition optimization techniques used in sampling theory,
avoiding high-frequency quantization noise, can be considered
as well (30).

The imaging of single localized biological molecules has been
a major driving force for building free-electron X-ray lasers
(31). Such molecules are complex, are fragile, and typically have
multiple-timescale dynamics. One strategy is to use a fresh sam-
ple in each iteration, assuming a destructive measurement. Ultra-
short X-ray pulses have been proposed to reduce damage (32).
Entangled hard X-ray photons have been generated by para-
metric down conversion, using a diamond crystal (33). Avoiding
damage of such complexes by using weak fields allows us to fol-
low the evolution of initially perturbed charge densities. Linear
diffraction scales as ∝ I

1/2
p with the signal photons that inter-

act with the sample while the overall coincidence image scales as
∝ I

3/2
p . Using diffraction of entangled photons from charge dis-

tributions initially prepared by ultrafast pulses results in imaging
of their real-space dynamics and provides a fascinating topic for
future study.

ACKNOWLEDGMENTS. The support of the Chemical Sciences, Geosciences,
and Biosciences Division, Office of Basic Energy Sciences, Office of Science,
US Department of Energy is gratefully acknowledged. Collaborative visits
of K.E.D. to the University of California, Irvine were supported by Award
DEFG02-04ER15571, and. S.M. was supported by Award DESC0019484. S.A.’s
fellowship was supported by the National Science Foundation (Grant CHE-
1663822). K.E.D. acknowledges the support from Zijiang Endowed Young
Scholar Fund, East China Normal University; Overseas Expertise Introduction
Project for Discipline Innovation (111 Project, B12024). We also thank Noa
Asban for the graphical illustrations.

Asban et al. PNAS | June 11, 2019 | vol. 116 | no. 24 | 11677

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
13

, 2
02

1 



www.manaraa.com

1. V. Elser, Phase retrieval by iterated projections. J. Opt. Soc. Am. A 20, 40–55 (2003).
2. J. R. Fienup, Phase retrieval algorithms: A comparison. Appl. Opt. 21, 2758–2769

(1982).
3. C. A. Marx, U. Harbola, S. Mukamel, Nonlinear optical spectroscopy of single, few,

and many molecules: Nonequilibrium Green’s function QED approach. Phys. Rev. A
77, 22110 (2008).
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24. G. Giedke, M. M. Wolf, O. Krüger, R. F. Werner, J. I. Cirac, Entanglement of formation
for symmetric Gaussian states. Phys. Rev. Lett. 91, 107901 (2003).

25. R. J. Glauber, Quantum Theory of Optical Coherence: Selected Papers and Lectures
(Wiley-VCH, Weinheim, Germany, 2007).

26. O. Roslyak, S. Mukamel, Multidimensional pump-probe spectroscopy with entangled
twin-photon states. Phys. Rev. A 79, 63409 (2009).

27. E. Wolf, New theory of partial coherence in the space–frequency domain. Part i:
Spectra and cross spectra of steady-state sources. J. Opt. Soc. Am. 72, 343–351
(1982).

28. I. A. Vartanyants, A. Singer, Coherence Properties of Third-Generation Synchrotron
Sources and Free-Electron Lasers, E. Jaeschke, S. Khan, J. R. Schneider, J. B. Hastings,
Eds. (Springer International Publishing, Cham, Switzerland, 2018), pp. 1–38.

29. R. Fickler, G. Campbell, B. Buchler, P. K. Lam, A. Zeilinger, Quantum entanglement of
angular momentum states with quantum numbers up to 10,010. Proc. Natl. Acad. Sci.
U.S.A. 113, 13642–13647 (2016).

30. T. M. Lehmann, C. Gonner, K. Spitzer, Survey: Interpolation methods in medical image
processing. IEEE Trans. Med. Imaging 18, 1049–1075 (1999).

31. H. N. Chapman et al., Femtosecond X-ray protein nanocrystallography. Nature 470,
73–78 (2011).

32. R. Neutzo, R. Wouts, D. Van Der Spoel, E. Weckert, J. Hajdu, Potential for
biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000).

33. S. Shwartz et al., X-ray parametric down-conversion in the Langevin regime. Phys.
Rev. Lett. 109, 013602 (2012).

11678 | www.pnas.org/cgi/doi/10.1073/pnas.1904839116 Asban et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
13

, 2
02

1 

https://www.pnas.org/cgi/doi/10.1073/pnas.1904839116

